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NONLINEAR RESONANCE OF TWO-DIMENSIONAL ION LAYEKS

S. A. Prasad and G. J. Morales
Physics Department
University of California at Los Angeles

Los Angeles, CA 90024-1547

A nonlinear theory of wave resonances in a two-dimensional ion layer
confined under the surfice of liquid helium is presented. The ion layer is
modelled as a two—-dimensional cold plasma fluid. In addition to the usual
nonlinearities present in the continuity equation and the equation of motion,
the theory considers a nonlinear dependence of the mass of a plasma particle
on its velocity, as suggested by indirect experimental evidence. Secular
perturbation theory is used to find the plasma response when the damped,
nonlinear system is driven externally. For typical experimental parameters,
the mass nonlinearity is found to be the dominant nonlinear effect, giving

rise to a backbending of the resonance curve.
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I. INTRODUCTION

Helium ions can be trapped just below the surface of superfluid helium.l,Z
These ions form an almost ideal two-dimensional layer held in position by
external electrostatic fields. Waves can be excited in the ion layer by an
oscillating electric potential applied to the walls of the confining cell.

As the amplitude of the applied potential is increased, the waves are
observedl to display nonlinear features such as hysteresis, indicative of a
backbending of the resonance curve. It {s the purpose of the present study to
provide an analytical description of such phenomena.

The linear properties of waves in these systems can be accurately
described3 by modelling the ions as a cold two-dimensional fluid plasma. Such
a model is used in this study to explain the nonlinear behavior. The first
source of nonlinearity considered here arises from the nonlinear terms in the
continuity equation and the equation of motion (the ponderomotive effect term)
which describe the fluid motion in the plane of the ion layer. The second
source of nonlinearity considered is a dependence of the mass of the plasma

particle on its velocity. A brief discussion of what a plasma particle is in

these systems 1is presented next to motivate this proposed nonlinearity.

M
Y

Helium is in the liquid state at typical experimental temperatures ~:

-

(< 0.2 K) and no external pressure. The presence of an He* ion in the liquid ﬂa
- Iy

o

\polarizes the surrounding helium atoms and provides enough local pressure (due

to electrostatic attraction) to freeze a sphere of about 25 helium atoms around

each ion. Since this object moves in a liquid, its effective mass is

further enhanced% by half the mass of the displaced fluid. Thus the effective
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mass of a singly charged plasma particle is expected to be approximately 150 a.u..
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A fit of experimental data! with linear wave theory yields similar values.

However, it has been experimentally observed! that the effective mass obtained

by the best fit between theory and experiments increases with the temperature

of the liquid helium (in addition to depending on the external confining

fields and the ion density). For the temperature range in Kef. 1

(0.1 -0.5 K), the dependence is nearly linear.

this dependence is not yet fully understood.

The microscopic reason tor

Nevertheless, one can

hypothesize that the increase in mass m is associated with the thermal motion

of the particle and that an oscillatory motion with a velocity v (caused, for

example, by a wave) is equivalent to an effective temperature Teoff = mjv|2/2

(for two-dimensional motion or twice this value for one-dimensional motion).

This leads to a dependence m = my[l + 8|v|2] where the coefficients mg and B8

depend on the external holding fields and the static ion charge density. The

value of B in typical experiments! is on the order of 10~7 cm—2s2.

The experiments on ion layers have typically employed a cylindrical

geometry and efforts are now underway to use a rectangular geometry.\7ln the

present work, the simpler Cartesian model is emphasized for clarity of exposi-

tion, but the corresponding results for the cylindrical case are also

described. Previous work?/on the nonlinear waves in Cartesian two-dimensionai

\ plasmas makes idealized assumptions on the equilibrium density profile and

\ uses boundary conditions (satisfied by the wave potential) which are not well
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justified; furthermore, only the ponderomotive nonlinearity is considered.

The goal of the present work is to present a rigorous treatment, —
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——ffaift‘_jgincluding exact equilibrium profiles and correct boundary conditions, of the
nonlinearities present in the continuity equation and the equation of motion
as well as the mass nonlinearity. ‘E&—_———“

The paper is organized as follows. The Cartesian geometry of the model
and the basic cold plasma fluid equations satisfied by the ion system are
described in Sec. II. Secular perturbation theory is used to solve the
nonlinear equations. Static equilibrium described by the zeroth order
equations is obtained in Sec. III. The first order equations comprise an
eigenvalue problem for the wave potential and are discussed in Sec. IV.
Solutions to these equations exist only for certain eigenvalues of the
frequency. Included in the analysis of the second order equations (Sec. V)
are the static ponderomotive potential as well as the plasma response at the
second harmonic. Analysis of the third order plasma response at the
fundamental frequency is presented in Sec. VI. The homogeneous part of the
equation 18 identical to the first order equation and therefore the existence
of a finite solution requires that the inhomogeneous part must be orthogonal
to the first order solution. This condition yields the shift in the linear
resonance frequency caused by the various nonlinear terms considered. It is
found that the dominant contribution in a typical experimental ion layer
is the mass nonlinearity which gives rise to a backbending of the resonant
curve. The analogous results for cylindrical geometry are presented in Sec.

VII. Conclusions are presented in Sec. VIII.




II. GEOMETRY AND BASIC EQUATIONS

The Cartesian model geometry is shown in Fig. l. A two-dimensional
plasma strip, translationally invariant in y (i.e., perpendicular to the plane
of the paper) and of width 2a in the x—direction is confined at z = d by
equilibrium external potentials ¢¢g , O and ¢npp applied to the top, side and
bottom of a confinement cell of width 2L and height h. The ions are held
just below the liquid helium surface by the combined effect3 of the external
holding fields and the dielectric polarization of helium. The ion layer, which
is almost ideally two-dimensional, lies at the liquid surface and forces
responsible for its vertical equilibrium are not explicitly considered here.
Furthermore, since the potential well in z for the ions is narrow and deep,
and since frequencies considered here are small compared to the bounce
frequency in this well, vertical motion of the ions is ignored. Finally, only
modes with wave vector component ky = 0 are considered. These are the
Cartesian analogs of the azimuthally symmetric modes measured in the
cylindrical geometry experiments of Ref. l. The cold fluid equations which

describe the two-dimensional ion system have the form

dog , 9 _

a_t+a_x(°")‘° R (1)
m r%%'+ w +v %; V] = q %; (° + b0 + ¢ew) z =d ’ (2)
V2¢ = -4mnqod8(z-d) , (3

where V2 = 32/3x2 + 32/3z2 . The continuity equation (1) relates the rate of
change of the areal charge density o(x,t) to the velocity v(x,t) in the plane
of the charges. Equation (2) is the equation of motion of a particle of mass

m and charge q under the influence of ¢(x,z,t), the potential generated by the
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plasma particles, ¢,,(x,z), the external confinement potential and ¢u,(x,2,t),

the external potential applied to excite waves. As indicated in the Introduc-

tion, the particle mass m is assumed to depend on the velocity as m = m,[1+8[v|2] .

Unlike Eqs.(l) and (2) which are defined only in the plane z=d of the charges,

Poisson's equation (3) is a three-dimensional equation relating the plasma

potential ¢ to o, subject to the boundary condition ¢ = 0 on the walls z =

and x = tL of the confining cell.

0,h

Before solving Eqs. (1)-(3), it is convenient to express them in terms of

dimensionless variables defined as follows:

q
b+ ¢ ’ $ * &, ¢ + ¢
2 2 eo eo ’ ew ew
m,L wp moszp2 moszp2
o
“pt > € ’ a0 ¢ ’
1 X + X LAY
L" phot » wp »
1 RY
f;; vy ’ ( wp)<8 » B s (4)
b 6 ) équoo(O)
where wp? = oL . (5)
with 05(0) being the equilibrium density at x = 0. In terms of the new
variables, Eqs. (1)=(3) take the form
90 , 3
T () =0, (©

L] )
[1+8lvI2] TgE+w +vgvl = =2 (04 6 + deu)|, o g » (D

and
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V2¢ = -08(z—d) . (8)

Secular perturbation theory i~ used to solve Eqs. (6)-(8). The plasna :
variables ¢, o and v are expanded in a perturbation series with € = §o/9g, as
the small expansion parameter; o, is the equilibrium density and &0 the
density perturbation produced by a wave driven by ¢oy = ¢o] coswt. The
zeroth order terms of the expansion series represent the time-—independent
equilibrium values and the first order terms represent linear waves with a
time dependence ~ cos wt. In the absence of damping and nonlinearities, the
plasma response has resonances at certain discrete values wpnp (n =1, 2, . .
.) of the frequency as shown in Sec. IIL. The inclusion of damping results
in a Lorentzian resonance peak centered at wQp, of width v and amplitude ée}/V
(for 6¢). This implies that for the perturbation expansion to be consistent,
one must have d¢el/vdy ~ 0(e), where ¢o = moszpz/q. Including just the
nonlinearities in Eqs. (6) and (7) gives rise, in the second order, to
time~independent terms as well as second harmonic terms ~ cosZwt which provide
a third order correction to the equation satisfied by terms proportional to
coswte This has the effect of causing a shift ~ 0(ezw0n) in the value of the
resonance frequency wpp. When the damping and the nonlinearities are both
effective, the resonance curve has a finite amplitude and is asymmetric about
Won+ To mathematically treat the two effects together, it is convenient to
formally order v ~ O(ezwon) so that the damping and the nonlinearities first
appear in the same order, namely the third; this also implies that ¢qo1/¢, ~
0(e3). The resulting approximation to the solution can, however, be used for

all values of v.
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With the scales ¢,) ~ (e3), the perturbation scries tor 4, o
and v have the form

-iwt
¢ + ¢eo + daw = boo0 t by *t [@lle ¢ + C‘C‘] + 20

<

-2iwt

-i

+ [¢22e + c.c.] + [(¢31 + ¢el)e wt + c.c.] + ooy, (9)

~fut -
o = ogo + [or1e " + coc. ] + 020 + fo22e " 4+ cuc. ]

-lwt
+ [0318 ® + CQCO] + o o . ’ (10)
-1 =2iuwt -iwt
v = rV11e + c.c.] + fv22e + ceoco | + [v31e + c.c.]
+ . o . 'Y (ll)

where vpg and v( are zero since there is no steady drift of particles in

the x~direction. The components on the right-hand sides of Eqs. (9)~(1l1) have
two subscripts, the first one referring to the order of perturbation and the
second to the harmonic content. It should also be noted that the spatial
dependence in Eq. (9) is on x and z while o and v of Eqs. (10) and (ll) are
defined only in the plane z=d of the plasma layer.

Equations (9)-(11l) are substituted in Eqs. (6)-(8) and terms with the
same time dependence and the same order in e equated. Since the modifications
to the resonance curve due to nonlinearities is the primary concern of the
present work, the frequency w is written w = wy + 8w where wy is the linear
resonance frequency and 8w = w=wy ~ 0(v) ~ 0(e2wy). The next four sections

discuss the resulting equations in the first four orders of perturbation.
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III. EQUILIBRIUM

In the zeroth order, the equations are time independent and describe the
equilibrium density profile. In addition to the condition v,, = 0, Eqs. (b)-
(8) in the zeroth order yield

d
I [%oo(x, 2 = d) + deo(x,z = d)] = 0, (12)
within the plasma, and

32 32
(5;? ¥ S;EJ $00(x,2) = = 0oo(x) 6(z—d) ’ ()

subject to the boundary condition ¢, = 0 at the cell walls. The external
potential ¢eo takes on the values ¢rp, O and $p0 on the top, side and bottom
of the confinement cell.

Equations (12) and (13) can be solved for the equilibrium density profile
Opo(x). Using the Green's function, Eq. (13) yields

1
$o0(x,z = a) = { dx'ogo(x")

sinh(n + 37"d sinh{n +4%)w(h-d) 1
5)TTX' . (14)

x ¥ 1 1 cos(n + %)wx cos(n +
n (o + 2)" sinh(n + 3)ah
Substituting this result in Eq. (12) and using a discrete grid for x reduces
the determination of 0yo(x) to a matrix inversion problem which can be
uniquely solved for any choice of the plasma width 2a and the ratio ¢t/ épg.
The equilibrium profile g,4,(x), numerically obtained for the scaled values

d = 0.1, h =0.2, a =0.78, ¢0/¢p0 = ~7 and for a grid with 256 points is

displayed in Fig. 2. The profile is nearly rectangular with the edge becouming

sharper3 with decreasing values of h.




-]10=-

{
IV. LINEAR THEORY
Only terms oscillating at the fundamental frequency are present in the ¢
first order equations arising from Eqs. (6)-(8): :
d
“tugoyy + 35 (opo vi1) =0 (15)
d -
“lwgvy) = - g% d1i(x,z = d) , (16) 2
7
V2911 = - o1] 8(z=d) . (17) :
These equations can be combined to give .
2 g2 3 3911
—wo2 V2911 + 3% [doo(x) 3] 8(z=d) = 0 (18)
which on integrating across the plasma layer z = d, yields
3411 311 d d . -
“uo? 97— ’d+ - ot 4]+ 55 Tooot0 dx oGz =1 =0, () :
-
where ¢}] satisfies the boundary condition ¢jj; = O at the walls of the cell. !
hY
Equation (19) is an eigenvalue equation which can be satisfied only tor -~
~
certain discrete values of wy. 1t is solved by using the expansion >
"

cos(n + —;_—)nx

X

$11(x,2z) = y B
n " sinh(n + %de sinh{n + %)w(h—d)

sinh(n + %)ﬂd sinh(n + %)w(h—z) , z >d

sinh(n + o)z sinh(n + Dath-d) L 2 <d Q)

By
-
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and the orthogonality of sines and cosines to yield
D(w,) B = 0 , (21)

where the elements of the matrix D are given by

sinh(n +‘%)ﬂh

1
Dpn(wg) = wp2 (n + 3)
e ° 2 sinh(n +-%)wd sinh(n + %}n(h-d)

1
1
= (n + EJ (m +‘%) w2 { dxX gho(x) sin(n +'%)wx sin(m + %)wx , (22)

and B is a vector whose components are Bp of Eq. (20). The eigenvalues ug),
w)2, w03, « « « for which |D| = 0 and the corresponding eigenfunctions ¢11’are
obtained numerically. As an example, the shape of ¢}1(x,z = d) corresponding
to the eigenvalue wg)] = 0.83 for the profile ggp(x) is displayed in Fig. 2.
The oscillations seen in ¢]] near the wall are of numerical origin. The
x-dependence of the eigenfunctions on the z = d plane can be closely
approximated3 by a single cosine function inside the plasma. The approximate
wave function cos 3.8x is shown as a dotted curve in Fig. 2 for comparison.
Since Eq. (18) is homogeneous, the amplitude of ¢)} is undetermined
within the perturbation scheme. By demanding the existence of a finite
solution to the third order equation one obtains a relation (resonance curve)

between the amplitude of ¢)] and the frequency w for a given external driver

del .




-]12-

V. SECOND ORDER EQUATIONS

distortion as well as the second harmonic response at 2w.

components of Eqs. (6)=(8) are

d
I (onvi* +on*vy) =0,

dv))* L dvil d
Vil g4x  *t V1L gx = T ax %20(x,z = d) ’

V2420 = - a0 §(z-d) .

The second order equations contain the static (zeru trequency) nonlinear

The zero trequency

(23)

(24)

(25)

Equation (23) is trivially satisfied for o)} and v]) given by Eqs. (15)-(17).
Equation (24) relates two perfect differentials and can be integrated in x to

yield the "ponderomotive” potential
$20(x,z = d) = - |vi1|2+C , (26)

where C is an as yet undetermined constant. Using the Green's function tech-
nique of Sec. I1I, Eqse. (25) and (26) can be reduced to a matrix equation and

numerically solved for o929, given v]] [from linear theory] and C. The

value of C {8 chosen so that

1
[ dx o30(x) = 0 , (27)
-1

which implies that charge is conserved. The shape of the nonlinear static

AN

density modification, o099(x), corresponding to the linear eigenvalue w(]| =
0.83 is shown in Fig. 3. It is observed that the ponderomotive force enhances

the plasma density at the center x=0 and at the edges x=%a and depletes the

XET T2

plasma elsewhere.

K/

Y LY YA

The second harmonic components of Eqs. (6)-(8) are




-13-

d
- 2w, 097 + g7 (060 v22 + 011 Vi) =0, (28)
_21 dvyp d )
Wo v22 + V1] g = ~ gx %22(x,z = d) » (29)
V2452 = - 032 8(x=d) (30)
which can be combined to yield
- (2 2 92 ) 3
(205)2 v2422 + 3% [900(x) 38221 8(z-d) =
3 dvl]
T 3% [aoo(x) Vil 5x  *t Zimoollvll] 8(z=d) . (31)
Following Sec. IV, Eq. (31) can be expressed as a matrix equation
D(2w5) E=F , (32)

where the matrix D is given by Eq. (22) and the vectors E and F are defined by

1
$22(x,z2 = d) = E En cos(n +'§)wx . (33)
n
9 dvil 1
- 3% [%ovil 5 + Uuwgoriviy] = [):_ Fn cos(n + 3)m . (34)

The numerical solution of Eqs. (32)-(34) for ¢72(x,z = d) can be readily
obtained, once the first order quantities o)) and v)] have been determined
from linear theory. For the first few resonance frequencies, 2wy is not near
a zero of 'D(w)! and hence the amplitude of ¢22 is small (compared to

viZ). Thus, kqs. (28) and (29) can be used to obtain good approximations for

4 v

ana - 2 by ignoring ¢2) in Eq. (29).

rH
-
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VI. THIRD ORDER EQUATIONS

The third order terms which oscillate at the fundamental frequency

satisfy the equations

. d
= 18woyy - 1w503] + g (Goov3L + o11*v22 + o2oviy + a22vi1*) = 0, (35)

dvy* 5 dv22
dx + Vi1l dx =

— 18wvyy + vy - dweB|vi1{2vy] = twov3] + v22

d
- 3% 310,z = d) + ger(x,z = )], (36)

92 $31 = - 031 8(z=d) . (37)

These equations can be combined to yield

3 3431
= w2 V293) + 37 [oo0(x) =51 6(z-d)

3 3
= [-2u58u011 - 37 {06 337 (de1 + vovi1*) *+ w1y

+ 1wy (ap1*v22 + o20viy + 022v11*) = LugooB|vil|2vii}] 6(z=d) . (38)

The operator acting on 43) is the same as the linear Hermitean operator of

Sec. IV. This property can be used to find a necessary condition for the
existence of a bounded solution ¢3) of Eq. (38). Multiplying Eq. (38) by ¢}}
and integrating over the volume of the cell, it is seen that the left-hand side
can be integrated by parts twice using the boundary conditions ¢;; = 0, ¢31 = 0

at the walls to obtain a volume integral of ¢3] multiplied by the linear

operator acting on ¢j]). But this is zero from Eq. (18). Therefore, the volume

integral of the right-hand side of Eq. (38) multiplied by ¢)} is also zero, i.e.,

e wet

G A

g
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1

[ dx ¢11(x,2 = d) {- 2wy8uwo])

-1

Writing éj] = A ¢]] where $11 is the linear potential normalized

-15~-

*
+ 0wy + twg(o)1*vo2 + opgvy) + o22vi¥)

= iwyoeBlvyy|2vylb =0 .

d d
- dx [000 dx {¢el(x:z =d) + szvll*}

(39)

such that Max. p(x<a) = 1 [where P = wo-l(d/dx)all(x’z = d)] and A is the

complex amplitude of ¢)] in this normalization, Eq. (39) can be expressed as

- 28w, 3] + ap - v, a) + |A|2A a3 =0 ’
W, Wo

0

where a], a2 and a3 are real quantities defined as

ajl

@2

a3

1

w? [ dx ggo ¥2
-1

1
d
wo { dx doo ¥ gx %el(x,z =d)

1
1 d d 1
_{ dx {7 %00 ¥ gx [¥ g ($22 - 7 ¥2)]

d d 1
- 122;; (000¥) 3% (022 = 5 ¥2) + wo202042

1 d 1 d
[ 5 (022 - 7 ¥2) - v I (oo¥)]

+
| —
<

N
[aB Fo N
»

- wg2 0o08 Y4}

@3] + a32 + a33 + a34 + a3s ’

(40)

(41)

(42)

(43)

‘fFZPfﬂFWT”FE“FFP?@?Wffﬁﬁﬁﬁﬁﬂﬁ
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v = ul,— $11(x,z =d) . (44)

4
odx
As described in the previous section, 97 can be ignored (in comparison with

¥2) in Eq. (43) for the first few modes. Letting A = |A|el® in Eq. (40),

equating real and imaginary parts and eliminating 6 yields

) 2 y242
(252 a) - a3 [a]2] + =5} a2 = a2,
o o
or
_ a3 2 2 23 2 _ azzmoz
[Tw = wy - 7a) wol|A|¢] + 4 b 1Al = —7;;;;_ . (45)

Equation (45) gives the frequency response curve, |A| vs. w, where |A| is the
amplitude of ¢]], for any value of the driver ¢e] or equivalently aj. For
small values (i.e., <<1) of the 'nonlinearity parameter'

P = (a3/2a1)(a22/a1?)(wo3/v3), |A| is small and hence the term (a3wo/2a])|A|2
can be ignored leading to the damped linear result, namely a Lorentzian
response curve with |A|2 « [(w-wy)2 + v2/4]-1. For p » 1, the effects of
nonlinearity become important, causing a frequency shift pv in the position of

the response curve peak; the curve bends forwards or backwards depending on

N

whether p (or a3) is positive or negative. Figure 4 displays plots of

normalized square amplitude (a}2/a2)(v2/wy2)|A|2 vs. the frequency

At Ta

difference (w-wy)/v for the values 0, *1, *5 of p.

The numerically obtained values of aj], ay and a3 tor the lowest four :~
modes (which are of even parity in x) and for ¢ej(x = *L) = 1, ¢ei(z = O,h) =0 -
are presented in Table I. The value of B which causes the mass non-

=
b
linearity a3s5 to cancel the other nonlinearities (a3}, a32, a33 and a34) éj
-
1s denoted by Bcrit and has the value =10 for all the modes shown. Since the o
3

P
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value of B [scaled as in Eq. (4)] estimated for typical experiments isl 0(1995),
the effect of the mass nonlinearity (a35) overwhelms the other nonlinearities.
Since a35 is negative, the frequency response curve bends towards

lower frequencies with increasing amplitude due to a decrease in the value ot

of the plasma frequency as the effective mass increases with the amplitude

- &

of the wave; this leads to a lower value of the resonance frequency.

Good approximations to the values of the coefficients ®j given in Table 1
can be obtained by noting that o0y55(x) [Fig. 1] can be approximated by a
step-function density profile of unit height and width 2a. Also, one can write
N Y = sinKx as a consequence of the single cosine approximation to ¢11(x,z =d)
for |x|<a, as illustrated in Fig. 2; the best fit values of K given in Table I
can be approximated by K = nn/a (corresponding to the resonance frequency
! won). This leads to a} = woza. Approximating dej(x,z = d) ~ (4&,/m)exp[(x-L)/h]
if a is not too close to L, the integral (42) can be performed yielding
ag = (-1)n+l 88y, (Kpwo/h)[(n/h)2 + anl-éxp[n(a-L)/h]. Also, as mentioned in
Sec. V, $22 can be ignored in comparison with 2 leading to &3] * a3y =
Kn2a/8, a33 * -wp2(Knpa/2)sinh2Kph[sinh2K,d sinh2Kp(h=-d) ]=1, a34 = 3Kp2a/8
A and a35/8 = 3wg2a/4. The estimate for a33 makes use of the approximation

$20(x,z = d) = -v12 + const = -(1/2)cos2Knx leading to

cos2Knx sinh2Kpd sinh2K,(h-z), z>d
$20(x,z) = - 2sinh2Knd sinh2Ky(h-d)

sinh2K,z sinh2Ky(h-d), z<d

, (46)

and hence to

- m - -

320

3420
o20(x) = = [~

dy = oz

Kn Sinthnh
d-' 7 Sinh2Knd sinhZKn(h-d)

'_‘L_()S.ZKnX .

‘ (47)

\
1
)
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This value for 0,5 is used in Eq. (43) along with y ~ sinK x to obtain the
estimate for ajj.

The coefficient a3j3 represents the self-modulation effect arising from
the static ponderomotive density modification o69). One can also consider the
cross-modulation effect of 92 (produced by the nth mode) on the frequency of
the mth mode. To isolate this effect, it is convenient to use the variational
principle expression3 for wom? obtained by multiplying Eq. (18) by ¢]] and

integrating over the volume of the cell:

1 d 2
) Il dX 050(x) [a‘ $11m(x,2z = d)]
Wom = h 1 2 . (48
IO dz [1 dx [98]10(x,2) |

If 0o0 is replaced by o6pp + 020n where 0920n is a small static density pertur-

bation produced by the nth mode, then the fractional change in wyy? is

1

2 [ dx o90n 92
8(uwom) . -1

2 1

Wom f

~1

’ (49)
dx a5, ¢m2

where Yn = (d/dx)¢}im(x,z = d). Approximating ooo by a rectangular profile
of width 2a and using the approximations Y, = sinKyx = sin(mmx/a) and Eq.
(47) for oy0n, ylelds zero for the numerator on the right hand side of Eq.
(49) unless m = n. Thus the ponderomotive density modification due to any
mode is expected to have little effect on the resonance frequencies of other
eigenmodes. In numerical computations using exact density profiles and
eigenfunctions, for example, a 107 density perturbation produced by the first

mode causes less than 1% change in the resonance frequencies of the next

three modes.
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VII. CYLINDRICAL GEOMETRY

The Cartesian results of Secs. II-VI can be extended in a straightforward
manner to the azimuthally symmetric modes of relevance to the cylindrical
geometry used in the experimental arrangement of Ref. 1. One again obtains

(45) with |A| being the amplitude of the linear mode and aj, ap and a3

given by
1
a) = we? flrdr Joo(r) W2 , (50)
L d
@2 = wo [ rdr goo(r) ¥ F7 dellr,z =d) (51)
1
a3 = = w2 8 [ rdr ggo(r) ¥* (52)
0

where now the lengths (r, z, d, and h) are scaled in terms of R, the radius of

the cell, the density in terms of 0,,(0), the frequencies in terms of

wp = [4mq2000(0)/moR]1/2 and B in terms of (Rwp)~2. Also y =

mo'l (d/dr) all(r,z = d). In writing Eq. (52) it is assumed that the contri-
bution from the mass nonlinearity is the dominant effect. To find useful
approximations of aj, ap, and a3, it is noted that in the cylindrical case3
also, 050(r) is nearly a rectangular profile of unit height and width a and ¢
= Jl(jlnr/a) to a very good approximation for O < r < a. Also ¢e)(r,z = d) =
(48y/n) Io(nr/h)/Io(n/h) 1f a is not very close to l. 1In the expression for
and ¢e], J and 1 are the Bessel function and the modified Bessel function,

respectively and j1 are the zeros of Jj, Using these approximations yields
n

1
a2 w?a? J 231, (53)

»" l o« -
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~bug by, jln Li(wa/h) .
az * —y Gin/a)Z + (7/my 2 To(n/n) Jo(J1n) s (54)
and !
a . ]
a3 = - w2 8 [ rdr J)*(§;, 3 . (55)
o L}

The numerical values of aj, ap, a3 [obtained from Eqs. (53)-(55)] and !
p/(8u00w2) = a3a22m02/201380w2 (which is independent of wg,) are displayed in
Table II for the first four azimuthally symmetric modes for typical experi- p

mental parametersl h = 0.2 and a = 0.895. The nonlinear frequency shift is

t
\

pv as in the Cartesian case.
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VIII. CONCLUSIONS

Using a cold plasma fluid model for the ion response, a nonlinear theory
of wave resonances in a two=-cimensional ion layer confined under the surface
of liquid helium, has been developed. Lindstedt-Poincaré theory of secular
perturbation is used to calculate the nonlinear response of the plasma when
damping and an external driver are both present.

It is found that the usual nonlinearities associated with the continuity
equation and the equation of motion give rise to a positive nonlinear shift in
the value of the resonance frequency. However, the experimentally measured
frequency shifts are negative.

A survey of the experiments suggests the possibility of another source
of nonlinearity, namely, a quadratic dependence of the effective mass of a
plasma particle on its velocity. For instance, it has been observed! that the
effective mass of an ion increases roughly linearly with the temperature of
liquid helium, from a value ~35.2 m{e at 0.1K to ~39.6 mye at 0.4 K for an ion
density of 7x107 cm=2. Postulating that the oscillatory motion of an ion due
to a wave corresponds to an increased effective temperature with AT = m|v|2
(for one-dimensional motion), one obtains m = my[] + 8|v|2] where my = 34 mye
and B = 6.7x10~7 cm~252. Scaled in terms of (Rwp)~2 where R is the cell
radius and wp = [équao(O)/mR]I’z, the coefficient B has the estimated
value *9x105, The increase in the mass with the amplitude of the wave leads
to a decrease in the value of wp and to a decrease in the value of the
resonance frequencies. The large value of the scaled B insures that the
negative shift of the resonance frequency due to mass nonlinearity overwhelms
the contributions from the nonlinear terms in the continuity equation and the
equation of motion. Using Table II and the valuel v = 2.74x10-2 wp, one

obtains, for the lowest azimuthally symmetric mode, m§L= wp?2 (1 - 7 &2)
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where &, is measured in volts and z = 1100 V=2, This value of z is to be
compared against the experimental value of 200 V=2, There is also some

7 that v also increases nonlinearly with amplitude; this

experimental evidence
would lower the theoretical prediction for rz. However, the important point is

that our conjecture of a mass nonlinearity gives the correct sign of the

effect and yields results close to the experimentally observed values, in

spite of various uncertainties regarding indirect measurements.

Since at the present time there does not exist a first-principles theory
capable of predicting the value of B, and since it is also possible that its
value may vary from one experimental set-up to another, in this study we have
introduced the concept of a critical B. Its numerical value is illustrated in
Table I. Physically, B.rit defines the regime beyond which the usual fluid
nonlinearities become less important than the mass nonlinearity. This may be

a useful tool in assessing the operational regime of future experiments.
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Cartesian model geometry.

Scaled equilibrium density profile Op0(x) for the scaled (to L)

values d = 0.1, h = 0.2, a = 0.78, o/ épo = -7 and the eigen-

function ¢11(x,z = d) (solid curve) corresponding to the lowest

eigenvalue wg] = 0.83. The dots are a plot of cos3.8x.

Nonlinear static density modification o9g(x) (produced by ¢]}

of Fig. 2) scaled in terms of 100 [Max vll(x < a))2.

Frequency response curve in which the square of the amplitude

|A| is plotted vs. the driver frequency for the values 0, *], *5

of the 'monlinear' parameter p = (a3/2a1)(azz/alz)(wo3/v3).
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TABLE CAPTIONS

TABLE I. Scaled numerical values of wy, K, a], a2, 23], @32, @33, a34
and a35/B for Cartesian geometry and the scaled ( to L) values d =
0.1, h = 0.2, a = 0.78 and #¢o/¢ho = -7+ Berit LS the value of 8
for which the frequency shift produced by the mass nonlinearity

cancels the frequency shift produced by fluid nonlinearities.

TABLE II. Scaled numerical values of a], ap, a3 and the nonlinearity
parameter p obtained from the approximate Eqs. (53)-(55) for the

scaled (to L) values d = 0.1, h = 0.2, a = 0.895 corresponding to

typical experiments in cylindrical geometry.
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